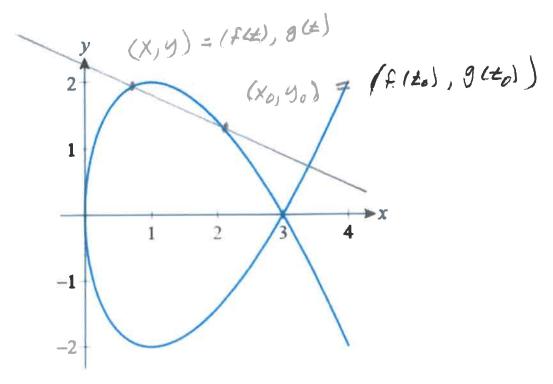
Calculus and Parametric Equations



Definition:

A curve C defined by the parametric equations x = f(t) and y = g(t) is differentiable at t_0 if both f and g are differentiable at t_0 . The parametrization is smooth at $\,t_0$ if both $\,f'$ and $\,g'$ are continuous and at least one of $\,f'(t_0)$ and $g'(t_0)$ is nonzero.

What is the slope of the line tangent to the curve at $(x_0, y_0) = (f(t_0), g(t_0))$?

What is the slope of the line tangent to the curve at
$$(x_0, y_0) = (f(t_0), g(t_0))$$

$$= \lim_{t \to t_0} \frac{y - y_0}{x - x_0} = \lim_{t \to t_0} \frac{g(t) - g(t_0)}{f(t) - f(t_0)} = \frac{g'(t_0)}{f(t) - f(t_0)}$$

$$= \lim_{t \to t_0} \frac{g(t) - g(t_0)}{f(t) - f(t_0)} = \frac{g'(t_0)}{f(t) - f(t_0)}$$

$$= \lim_{t \to t_0} \frac{g'(t_0)}{f(t) - f(t_0)} = \frac{g'(t_0)}{f(t) - f(t_0)}$$

$$= \lim_{t \to t_0} \frac{g'(t_0)}{f(t) - f(t_0)} = \frac{g'(t_0)}{f(t) - f(t_0)}$$

$$= \lim_{t \to t_0} \frac{g'(t_0)}{f(t) - f(t_0)} = \frac{g'(t_0)}{f(t) - f(t_0)}$$

Formula: Parametric Formula for $\frac{dy}{dx}$

Assume the curve C is defined parametrically by x = f(t) and y = g(t). If each of the three derivatives $\frac{dy}{dx}$, $\frac{dy}{dt}$, and $\frac{dx}{dt}$ exists at a given point, and if $\frac{dx}{dt} \neq 0$, then

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{g'(t)}{f'(t)}$$

The curve C has a vertical tangent line (and hence $\frac{dy}{dx}$ does not exist) at a point of smoothness where $\frac{dx}{dt} = 0$ (that is, $\frac{dy}{dt} \neq 0$ and $\frac{dx}{dt} = 0$).

Example:

Find the equation of any horizontal or vertical tangent line to the curve $x=t^2-t$, $y=1+6t^2$.

F(b) =
$$\pm^2 - \pm$$
, $g(\pm) = 17 \pm 2$
 $f'(x) = 2\pm -1$, $g'(0) = 0$ and $f'(0) = -1 \neq 0$,
At $\pm = 0$, $g'(0) = 0$ and $f'(0) = -1 \neq 0$,
so there is a horizontal tangent line
at $(F(0), g(0)) = 10, 1$.
The equation is $y = 1$
At $\pm = \frac{1}{2}$, $F'(\frac{1}{2}) = 0$ and $g'(\frac{1}{2}) = 6 \neq 0$,
so there is a vertical tangent line
at $(F(\frac{1}{2}), g(\frac{1}{2})) = (-\frac{1}{2}, \frac{1}{2})$
The equation is $x = -\frac{1}{2}$.

